Cobalt-lithium stuffed quartz solid solutions by sol-gel synthesis

Beatriz Paiva Da Fonseca*,†, Gundula Helsch1, Joachim Deubener1, and Alessio Zandona2

1Clausthal University of Technology, Institute of Non-Metallic Materials, Germany – Germany
2Department of Materials Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany – Germany

Abstract

Stuffed aluminosilicate quartz solid solutions (Qss) represent the main functional component of state-of-the-art zero-thermal-expansion glass-ceramics. For saving lithium resources, the possibility of lithium substitution is investigated. Therefore Qss in the CoO-Li2O-Al2O3-SiO2-system were prepared by sol-gel synthesis. Starting from Qss with spodumene composition (Li2O Al2O3 4 SiO2) lithium ions were substituted stepwise by cobalt ions. The as-received amorphous sol-gel materials were crystallized > 750°C and depending on cobalt concentration, Qss and/or spinel were detected by X-ray diffraction (XRD). Thermal expansion of Qss was measured in-situ by high-temperature XRD.

Keywords: Sol gel, thermal expansion, quartz solid solutions, lithium aluminosilicate, cobalt

*Speaker
†Corresponding author: beatriz.paiva.da.fonseca@tu-clausthal.de