Micro-Raman spectroscopy of the high low transition of quartz solid solutions crystallized from aluminosilicate glasses

Benedict Hagel∗†1, Gundula Helsch1, and Joachim Deubener1

1Institute of Non-Metallic Materials [Clausthal-Zellerfeld] – Germany

Abstract

The phase transition between a low-temperature trigonal form (space group $P3121$ or $P3221$) and a high-temperature hexagonal one (space group $P6422$ or $P6222$) of stuffed derivatives of quartz crystallized from glasses of the Li2O-Al2O3-SiO2 system was determined by micro-Raman spectroscopy. This method enables local (mm scale) assignment of the high-/low-type of quartz crystal and an indirect determination of their chemical composition (degree of stuffing) from the position and intensity of characteristic bands close to 110, 355 and 460 cm$^{-1}$. Raman spectra were presented in a wide range of compositions ranging from 100–50 mol% SiO2.

Keywords: Micro, Raman, quartz transition, glass ceramic, LAS

∗Speaker
†Corresponding author: benedict.hagel@tu-clausthal.de